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Abstract. We analyze τ lepton decay observables, namely the moments of the hadronic spectral density
in the finite energy interval (0, Mτ ), within finite order perturbation theory including α4

s corrections. The
start of the asymptotic growth of the perturbation theory series is found at this order in a scheme-invariant
manner. We establish the ultimate accuracy of finite order perturbation theory predictions and discuss the
construction of optimal observables.

1 Introduction

The study of τ lepton decays provides a wealth of informa-
tion on low energy hadronic physics, where the accuracy
of experimental data is permanently improving [1,2]. The
central quantity of interest is the hadronic spectral den-
sity. The spectral density has been calculated with a very
high degree of accuracy within perturbation theory (see,
e.g., [3–5]). The structure of the observables – related to
the two-point correlator of hadronic currents with well es-
tablished and simple analytic properties – makes the com-
parison of experimental data with theoretical calculations
very clean. All these features make τ lepton physics an
important area of particle phenomenology where theory
(QCD) can be confronted with experiment to a very high
precision [6–10].

In the present note we show that within the finite order
perturbation theory analysis the ultimate theoretical pre-
cision has been reached already now. The limit of precision
exists due to the asymptotic nature of the perturbation
theory series. The actual magnitude of this limiting preci-
sion depends on the numerical value of the coupling con-
stant, which is the expansion parameter. We perform our
analysis and reach our conclusions in a renormalization-
scheme invariant way.

The normalized τ lepton decay rate into hadrons h is
given by

Rτ =
Γ (τ → hν)
Γ (τ → lνν̄)

= Nc(1 + δ), (1)

with

Rexp
τ = 3.649 ± 0.014 and δexp = 0.216 ± 0.005. (2)

The first term in (1) is the parton model result, while
the second term δ represents the effects of the QCD in-
teraction. In this paper we neglect electroweak corrections

altogether. The theoretical expression for the rate is given
by

Rτ = Nc

∫ M2
τ

0
2

(
1 − s

M2
τ

)2 (
1 + 2

s

M2
τ

)
ρ(s)

ds

M2
τ

. (3)

The spectral density ρ(s) is related to Adler’s D function
through the dispersion relation

D(Q2) = Q2
∫

ρ(s)ds

(s + Q2)2
. (4)

The D function is computable in perturbation theory. In
the MS scheme the perturbation theory expression for the
D function is given by

D(Q2) = 1 +
αs

π
+ 1.64

(αs

π

)2

+ 6.37
(αs

π

)3
+ k3

(αs

π

)4
+ . . . , (5)

where the running coupling is normalized at the scale
µ = Q. The light quarks u, d and s are taken to be mass-
less. Equations (3)–(5) constitute the full theoretical in-
formation necessary for the perturbation theory analysis
of the τ system. The fourth order MS scheme coefficient
k3 is not known at present.

In the present note we do not systematically discuss
non-perturbative effects stemming from standard power
corrections [11]. Also, the infinite resummation of the per-
turbation theory series different from the standard renor-
malization group improvement is used only as a toy exam-
ple [12]. The standard power corrections due to nonvan-
ishing vacuum expectation values of local operators within
operator product expansion are relatively small and can
be simply accounted for if desired. The coefficient func-
tions of the local operators are known in low orders of the
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perturbation theory expansions, and there is no necessity
to thoroughly analyze their convergence properties. It is
the high precision achieved in the experimental analysis
of τ decays and the rather advanced stage of theoretical
description that calls for a detailed analysis of the physics
of the τ system.

2 Internal perturbation theory description
of basic τ system observables

The central quantity of interest in the τ system is the
hadronic spectral density which can be measured in the
finite energy interval (0, Mτ = 1.777 GeV). Being a dis-
tribution (in theory) or a rapidly varying function in the
vicinity of resonances (in experiment) the hadronic spec-
tral density cannot be analyzed pointwise within pertur-
bation theory. The appropriate quantities to be analyzed
are the moments (or generalized Fourier components over
a chosen complete set of test functions). We define mo-
ments of the spectral density by (Mτ is chosen to be the
unity of mass)

Mn = (n + 1)
∫ 1

0
ρ(s)snds ≡ 1 + mn. (6)

Due to the completeness of the basis {sn : n = 0, . . . ,∞}
the moments mn contain all information about ρ(s). The
invariant content of the investigation of the spectrum, i.e.
independent of any definition of the charge, is the simulta-
neous analysis of all the moments. Note that within finite
order perturbation theory the moments (6) coincide with
the results of contour integration [13–16] because of the
analytic properties of the functions lnp s.

In order to get rid of artificial scheme-dependent con-
stants in the perturbation theory expressions for the mo-
ments we define an effective coupling a(s) directly on the
physical cut through the relation

ρ(s) = 1 + a(s). (7)

All the constants that may appear due to a particular
choice of the renormalization scheme are absorbed into the
definition of the effective charge; see e.g. [17–20]. Note that
if there were no running (as in the conformal limit of QCD
with vanishing β function or at the infrared fixed point)
then the whole physics of the τ system in the massless ap-
proximation (without strange particles, for instance, and
including only perturbative corrections without possible
power corrections) would reduce to the determination of
a single number a(Mτ ) ≡ a, and consequently there would
not be any problems with the convergence of the pertur-
bation theory series. Because of the running of a(s), how-
ever, different observables, i.e. different moments of the
spectral density, generate different perturbation theory se-
ries from the original object ρ(s) in (7). The whole set of
moments needs to be analyzed in a scheme-invariant way
[21–23]. Note that the introduction of a natural internal
coupling parameter such as the effective charge a(s), al-
lows one to extend the perturbation theory series needed

for the description of relations between observables by
one more term as compared to the analysis in e.g. the
MS scheme [21,24]. When defining the effective charge di-
rectly through ρ(s) itself we get theoretical perturbative
corrections to the moments only because of the running.
Without running one would have

Mn = 1 + a(Mτ ) ≡ 1 + a, or mn ≡ a, (8)

and the perturbation theory analysis would be over (we
neglect power corrections for the moment!). In any given
order of perturbation theory the running of the coupling
a(s) defined in (7) contains only logarithms of s with co-
efficients given by an effective β function:

a(s) = a + β0La2 + (β1L + β2
0L2)a3

+
(

β2L +
5
2
β1β0L

2 + β3
0L3

)
a4 + . . . , (9)

where a = a(M2
τ ), and L = ln(M2

τ /s). The contributions
of powers of logarithms to the normalized moments are

(n + 1)
∫ 1

0
sn lnp(1/s)ds =

p!
(n + 1)p

. (10)

Therefore, at fixed order of perturbation theory the effects
of the running die out for large n improving the conver-
gence of the perturbation theory series. With the defini-
tion of the charge according to (7) all high order correc-
tions vanish at n → ∞ at any fixed order of perturbation
theory. With running one has instead of (8):

m0 = a + 2.25a2 + 14.13a3 + 87.66a4

+ (433.3 + 4.5k3)a5,

m1 = a + 1.125a2 + 4.531a3 + 6.949a4

+ (−175.2 + 2.25k3)a5,

m2 = a + 0.75a2 + 2.458a3 − 1.032a4

+ (−142.6 + 1.5k3)a5,

m3 = a + 0.563a2 + 1.633a3 − 2.542a4

+ (−110.4 + 1.125k3)a5,

· · · ,
m100 = a + 0.022a2 + 0.041a3 − 0.25a4

+ (−4.08 + 0.045k3)a5. (11)

For large n the moments behave better because the in-
frared region of integration is suppressed. Note that the
coefficients of the series in (11) are saturated with the
lowest power of logarithm for large n for a given order
of perturbation theory, i.e. they are saturated with the
highest coefficient of the effective β function.

Higher moments are not welcome from the experimen-
tal point of view. They are dominated by the contributions
coming from the high energy end of the τ decay spectrum
(therefore, they converge better perturbatively) but the
experimental accuracy for the moments basically deterio-
rates with increasing n because the poorly known contri-
butions close to the right end of the interval are enhanced.
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To suppress experimental errors from the high energy end
of the spectrum the modified system of mixed moments

M̃kl =
(k + l + 1)!

k!l!

∫ 1

0
ρ(s)(1 − s)kslds ≡ 1 + m̃kl (12)

can be used [25]. The weight function (1 − s)ksl has its
maximum at s̄ = l/(l + k). The integral in (12) is dom-
inated by contributions from around this value. A disad-
vantage of choosing such moments is that the (1 − s)k

factor enhances the infrared region strongly and ruins the
perturbation theory convergence. As an example one has

m̃00 = a + 2.25a2 + 14.13a3 + 87.66a4

+ (433.3 + 4.5k3)a5,

m̃10 = a + 3.375a2 + 23.72a3 + 168.4a4

+ (1042. + 6.75k3)a5,

m̃20 = a + 4.125a2 + 31.24a3 + 241.1a4

+ (1683. + 8.25k3)a5,

m̃30 = a + 4.688a2 + 37.51a3 + 307.3a4

+ (2324. + 9.375k3)a5. (13)

The values of the coefficients in the series (13) can be
found in a concise form for arbitrary k at any giving finite
order of perturbation theory. For instance, the contribu-
tion of the log term is given by

(k + 1)
∫ 1

0
(1 − s)k ln(1/s)ds =

k+1∑
j=1

1
j
. (14)

In contrast to (10) it increases as ln(k) for large k, making
the coefficients of the perturbation theory series large. The
contribution of the log2 term reads

(k + 1)
∫ 1

0
(1 − s)k ln2(1/s)ds

=


k+1∑

j=1

1
j




2

+
k+1∑
j=1

1
j2 , (15)

and can be seen to grow as ln2(k) for large k.
In practical applications our formal criterion of the ac-

curacy which the series provides is given by the numerical
magnitude of the last term of the series. However, this
criterion should be applied with great caution. Because of
the freedom of the redefinition of the expansion parameter
the last term of the series can always be made arbitrary
small for any given observable. One can give an invariant
meaning to the quality of the perturbation theory expan-
sion only for a set of observables.

Before proceeding we would like to comment on the
contribution of power corrections to the systems of mo-
ments (6) and (12) and the interplay between the magni-
tude of this contribution and the structure of the pertur-
bation theory series. For the system of moments in (6),
the contribution of power corrections reduces to a single
term (neglecting the weak log(Q) dependence of the coef-
ficient functions of the operator product expansion which

is a common practice) of the form (Λ2/M2
τ )n which de-

creases very fast with n (Λ is a typical scale of power
corrections related to the non-perturbative scale of QCD
and Λ < Mτ ). This makes the perturbation theory con-
tribution dominant in the total result. This perturbative
term for the large n moments is saturated with high en-
ergy contributions and therefore converges perturbatively.
The convergence becomes even better with increasing n.
The moments are perturbatively dominated and, there-
fore, precise. On the contrary, for the system of mixed
moments in (12) with l ∼ 0 the large k moments are satu-
rated with low energy contributions, i.e. basically with the
contribution of the ground state resonance, and therefore
are completely non-perturbative which is reflected in the
fast deterioration of perturbative convergence. The con-
tribution of power corrections to the moments (12) picks
out many terms in all orders from n = 2 to n = k + 1.
Nothing definite can be said about such a sum of power
corrections in any realistic case. This also indicates the
importance of power corrections for mixed moments. The
perturbation theory series is the same both for the vector
and axial vector channels, while the lowest resonance con-
tributions are completely different (the pion instead of the
ρ meson). Therefore no method of summation of perturba-
tion theory series can bring it to agree with experiment. In
this case perturbation theory is in trouble and the power
corrections provide the correct result for large k. Large k
mixed moments, therefore, are not usable within the per-
turbation theory framework, even if they are preferable
from the experimental point of view.

Thus, one faces the usual clash between experimen-
tal and theoretical accuracy which is reflected in our case
in the range of (k, l) values for the mixed moments that
are chosen as optimal observables. Having explicit per-
turbation theory formulas at hand, one can establish the
ultimate theoretical accuracy implied by the asymptotic
character of perturbation theory series for a given exper-
imental observable with any stated precision. This allows
one to conclude which error – experimental or theoretical
– dominates the uncertainty of an observable related to τ
decay physics.

For our numerical estimates we take a = 0.111 as ob-
tained from the corresponding value of the MS charge.
From the set of moments {mn;n = 0, . . . , } the moment
m0 has the largest infrared contribution. Therefore, a set
of observables has the worst accuracy if the moment m0
is included in the set. For m0 one obtains

m0 = 0.111 + 0.0277 + 0.0193 + 0.0133
+ (0.0073 + 0.000076k3). (16)

As mentioned before the numerical value of the coefficient
k3 is unknown at present. In some of the following evalu-
ations we want to fix its value to have a feeling of the im-
portance of the last term of the perturbation theory series.
One popular value is k3 = 25 based on the Padé approxi-
mation. Another value, k3 = 91, nullifies the fourth order
coefficient of the effective β function [27]. Both these num-
bers are used only for illustrative purposes while our con-
clusion about perturbatively commensurate observables is
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independent of k3. Numerically for k3 = 25 one has for the
zeroth moment

m0 = 0.111 + 0.0277 + 0.0193 + 0.0133 + “0.009′′. (17)

Formally, the convergence still persists even in (17) if one
only requires subsequent terms of the series to decrease,
but the convergence is very slow. Also, the total contribu-
tion of the four higher order terms is more than 60% of
the leading one. For the first moment the convergence is
considerably better:

m1 = 0.111 + 0.014 + 0.006 + 0.001
+ (−0.003 + 0.00004k3), (18)

and for k3 = 25

m1 = 0.111 + 0.014 + 0.006 + 0.001 − “0.002′′. (19)

With the choice k3 = 25 the O(a5) term already shows
numerical growth. If one keeps only the smallest term one
gets a formal accuracy of about 1% and the total contri-
bution of the three higher order terms gives only about
20% of the leading one. The large difference in accuracy
between m0 and m1 is a general feature of the moment
observables at fifth order of perturbation theory: one can-
not get a uniform smallness at this order for several mo-
ments at the same time adjusting only one number, k3.
For a = 0.111 we therefore conclude that one is start-
ing to see the onset of asymptotic growth at fifth order.
The growth of the terms is independent of any definition
of the charge if several moments are analyzed simultane-
ously and this feature cannot be changed by any choice
of k3. For any single moment, e.g. m0, one can always
redefine the charge and make the series converge well at
any desired rate, but then other moments become bad
in terms of this charge. The invariant statement about
the asymptotic growth is that the system of moments mn

with n = 0 included cannot be treated perturbatively at
the fifth order of perturbation theory for the numerical
value of the expansion parameter a = 0.111 if one wants
to obtain an accuracy better than 5–10%. This statement
about the ultimate accuracy of the set of moment ob-
servables attainable in fifth order of perturbation theory
is independent of whichever numerical value k3 takes. If,
however, the system of moments mn does not include m0
as an observable, a uniform accuracy better than 1% can
be obtained for such a system within perturbation theory.
For instance, excluding m0 and using k3 ∼ 100 one can
make the system of moments with n ≥ 1 perturbation
theory commensurate at fifth order in the sense that all
fifth order terms can be made small simultaneously. To
demonstrate this in a scheme-invariant way we choose the
second moment (which is already well convergent) as a
definition of our experimental charge and find

m0 = m2 + 1.5m2
2 + 9.417m3

2 + 59.28m4
2

+ (310.3 + 3k3)m5
2,

m1 = m2 + 0.375m2
2 + 1.51m3

2 + 2.527m4
2

+ (−54.45 + 0.75k3)m5
2,

m2 = m2,

m3 = m2 − 0.19m2
2 − 0.544m3

2 + 0.742m4
2

+ (35.2 − 0.375k3)m5
2,

m4 = m2 − 0.3m2
2 − 0.803m3

2 + 1.69m4
2

+ (56.641 − 0.6k3)m5
2. (20)

The convergence for the moments m1–m4 (and for n > 4)
is fine. The total contribution of higher order corrections
is small. The worst series is the one for the zeroth order
moment. Equation (20) shows that no choice of k3 yields
an accuracy for both m0 and m1 which is essentially bet-
ter than the fourth order term. In fact, there is a narrow
window, 40 < k3 < 60, where the formal criterion of con-
vergence is satisfied for both m0 and m1, but we do not
find it natural to rely on such a fine tuning; and even
then the accuracy of the zero moment is only about 10%.
This is an indication that the ultimate accuracy of the
perturbation theory expansion for the zeroth moment has
been reached. If the moment m0 is excluded the choice
k3 ∼ 100 allows one to make the convergence fast even to
fifth order, and no conclusion about an asymptotic growth
is possible.

The perturbation theory expansions for the system
of moments with (1 − s)k weight shows worse behavior.
With the above criterion of accuracy, the precision which
is given by the series from (13) is of order 10–20% for the
numerical value of a. This is not enough for a compari-
son with experiment at the present level of precision. For
instance, an expansion of the higher moments in (13) in
terms of the first one (which is the most perturbative one
for this system) goes as follows:

m̃00 ≡ m0 = 0.17,

m̃10 = 0.17 + 0.033 + 0.022 + 0.011
+ (−0.005 + 0.00032k3),

m̃20 = 0.17 + 0.054 + 0.043 + 0.027
+ (0.0015 + 0.00053k3),

m̃30 = 0.17 + 0.070 + 0.061 + 0.046
+ (0.014 + 0.0007k3). (21)

These series possess a formal accuracy of from 6% to 25%,
and the contribution of higher order terms can be as large
as the leading term. Because of the slow convergence there
is no sign of improvement with higher orders of the per-
turbation theory: the series expansions do not allow any
reliable estimate of the accuracy for large mixed moments.
Also while for the moments (6) the total contribution of
the corrections is small, the situation is different here. The
total change of the leading order result due to higher order
corrections is considerable and strongly differs for various
moments. This is another indication that the set of mixed
moments is not commensurate perturbatively.

3 τ decay rate

The τ decay width is given by a specific linear combina-
tion of moments. Because of the factor (1 − s)2 present
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in (3) the convergence property of the total decay rate
observable is not optimal. The (1 − s)2 factor enhances
the infrared region of integration, i.e. the relative magni-
tude of the contributions of logarithms ln(M2

τ /s) at small
energy. The concrete shape of the weight function with
the weight factor (1 − s)2 is the main source of the slow
convergence. One has

rτ = a + 3.563a2 + 24.97a3 + 174.8a4

+ (1041. + 7.125k3)a5. (22)

Using a = 0.111 and k3 = 25,

rτ = 0.111 + 0.044 + 0.034 + 0.027 + “0.021′′. (23)

Formally, the consecutive terms decrease but the decrease
is very slow. One can see that the pattern of convergence
mainly follows that of the moment m̃20 from (13) because
of the factor (1 − s)2 in (3).

Equations (2) and (23) show the essence of the problem
we are addressing. In the finite order perturbation theory
analysis one has to compare δexp with δth:

0.216 ± 0.005 = δexp, versus
δth = 0.111 + 0.044 + 0.034 + 0.027 + “0.021′′, (24)

and the uncertainty of the theoretical expression “0.021”
(or even 0.027) is much larger than the experimental er-
ror of 0.005. Thus, the theoretical uncertainty due to the
truncation of the perturbation theory series is much larger
than the experimental error of the corresponding observ-
able. The common practical expectation for theoretical
perturbation theory expansions to be useful is the small-
ness of the total higher order corrections, if nothing is
known about the convergence of the expansion. For the
rate observable the corrections increase the leading order
result by a factor of 2. Note that one can improve the
explicit convergence of the rate observable by a special
redefinition of the expansion parameter due to renormal-
ization scheme freedom. However, then the first moment of
the differential decay rate will behave wildly. It is this fea-
ture that prompts us to reach definite conclusions about
the asymptotic growth of perturbation theory expansion
independent of any scheme. Two different sets of observ-
ables, where one set includes the moment m0 and the other
set does not include it, are not perturbatively connected
with an accuracy required by experiment. Indeed, the first
s moment of the differential decay rate dRτ/ds gives the
series with a faster convergence than (22):

r(1)
τ = a + 2.138a2 + 10.15a3 + 28.43a4

+ (−268.3 + 4.275k3)a5, (25)

or numerically with k3 = 25:

r(1)
τ = 0.111 + 0.026 + 0.014 + 0.004 − “0.003′′. (26)

The second s moment has an even better perturbative
expansion:

r(2)
τ = a + 1.575a2 + 6.186a3 + 6.386a4

+ (−283.3 + 3.15k3)a5, (27)

and numerically with k3 = 25:

r(2)
τ = 0.111 + 0.0194 + 0.0085 + 0.001 − “0.003′′. (28)

The fifth order term is larger than the fourth order term
for k3 = 25. No choice of k3 can simultaneously make all
these three observables convergent at fifth order. If one
chooses k3 ∼ 100 in order to guarantee a better conver-
gence of the higher moments (which is physically moti-
vated) one almost destroys the perturbation theory series
for the decay rate (22).

The (1−s)n moments of the differential decay rate sup-
press poorly known high energy experimental data. Taking
n = 1 as an example one has

r(1−s)
τ = a + 4.173a2 + 31.31a3 + 237.6a4

+ (1603. + 8.35k3)a5, (29)

and numerically for k3 = 25

r(1−s)
τ = 0.111 + 0.051 + 0.043 + 0.036 + “0.031′′. (30)

For k3 = 100 the series reads

r(1−s)
τ = 0.111 + 0.051 + 0.043 + 0.036 + “0.041′′, (31)

which gives only about 30% accuracy and more than a
factor 2 for the change of the leading order term. We con-
clude that the theoretical precision cannot compete with
the experimental precision.

There are two distinct problems in analyzing τ decays:
one is to describe the set of observables of the system
using its internal coupling parameter defined to get the
highest precision, and establish whether the set is pertur-
batively commensurate, while another is to extract the
standard MS parameters. It can happen that the set of
observables is perturbatively connected with some given
accuracy but the MS coupling αs is not the best param-
eter for the expansion. This is the case here. In internal
terms the τ system is described with higher accuracy in
terms of the number of perturbation theory terms than in
the MS scheme. However, at this level of expansion one
sees the asymptotic growth of the perturbation series for
the numerical value of the expansion parameter fixed by
experiment.

The expression for the decay rate in the MS scheme
possesses only O(α3

s ) accuracy:

rτ =
(αs

π

)
+ 5.20

(αs

π

)2
+ 26.4

(αs

π

)3

+ (78.0 + k3)
(αs

π

)4
, (32)

with a numerical precision of only 30% again. A numer-
ical value for αs is usually extracted treating the three
first terms of the rate expression (32) as an exact func-
tion. The numerical value found is rather precise. How-
ever, the accuracy of the numerical prediction for other
observables is dominated by the uncertainty of the trun-
cation of the series and is poor if the observable contains
the zeroth order moment. Therefore, the comparison of
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different observables of the system cannot be done with
high precision, and the ultimate precision is limited by
the asymptotic growth of the perturbation theory series.
The coupling constant, though important, is still an artifi-
cial parameter and the knowledge of its precise numerical
value does not suffice for computing observables with suf-
ficiently high precision.

The investigation of the τ system can be performed
in N4LO without any free parameters with the use of the
internal charge a (and even N5LO with the single free pa-
rameter k3, which does not affect the conclusion about the
asymptotic structure of perturbation theory series). How-
ever, the MS scheme coupling can be expressed through
a only up to NNLO because of the unknown coefficient
k3. The extraction of the MS charge from a can be made
through the relation

αMS
s (Mτ )

π
= a − 1.64a2 + 15.7a3

+ (49.6 − k3)a4 + . . . , (33)

with a reasonably fast convergence for k3 = 25 or k3 =
100.

4 Infrared fixed point as a model
for an infinite perturbation theory series

The accuracy of approximating a function with the sum of
a finite number of term of its asymptotic series strongly de-
pends on the analytic structure of this function. Generally,
there is an infinite number of ways to sum an asymptotic
series with quite different results. Therefore, estimates of
the accuracy based on the asymptotic series alone can
be rather misleading. To discuss this issue in more de-
tail (though for illustrative purposes only), we consider a
model for the exact function as a source for the perturba-
tive expansion (or recipe of the infinite resummation). The
model uses the existence of the infrared fixed point for the
running coupling in the third order of perturbation theory
which allows one to extrapolate running to the origin. In
this particular case we can compare perturbative expan-
sions with an exact answer. This example allows one to
check the general conclusions about the asymptotic struc-
ture and the divergence of the series, even if this is done in
a model-dependent way. The effective β function is given
by

βeff(a) = −9
4
a2 − 4a3 + 25.7a4

+
(

409.5 − 9
2
k3

)
a5 + O(a6), (34)

where the only free parameter is k3 because the β3 coef-
ficient in the MS scheme is known [26]. The third order
approximation of the β function (34) possesses an infrared
fixed point with the value af = a(0) = 0.384.

The integration in (6) can be explicitly performed with
the third order β function from (34). With the initial value

a = 0.111 one obtains mf
0 = 0.1605, mf

1 = 0.130954 to be
compared with the results of (11), (16 and (18). The naive
estimate of the accuracy does not always work for this
resummation recipe for all the moments. Indeed, having
the explicit model at hand one can generate an arbitrary
number of terms of the perturbative expansion. For the
zeroth moment the series diverges with the pattern

mfix
0 = 0.111 + 0.028 + 0.019 + 0.013 + 0.014

+ 0.018 + 0.029 + 0.053 + 0.114 + . . . , (35)

giving an ultimate accuracy of only about 10%. This ac-
curacy is obtained keeping the smallest term. The sum of
the first four terms gives the best estimate,

mfix,best
0 = 0.111 + 0.028 + 0.019 + 0.013

= 0.171 ± 0.013,

to be compared with the exact result mf
0 = 0.1605. The

central value is a bit too high but still within the uncer-
tainty given by the last term.

For mfix
1 one also finds a divergent series but with a

much faster decrease of the first few terms. The pattern
of “convergence” is given by the following huge expression
which we display to show how complicated things can be-
come. One has

mfix
1 = 0.111 + 0.013861 + 0.006197

+ 0.001054 + 0.000480 + 0.000088
+ 0.000053 + 0.000016 + 0.000015
+ 0.000014 + 0.000019 + 0.000026
+ 0.000042 + 0.000072 + 0.000135
+ 0.000268 + 0.000568 + 0.001277
+ 0.003 + 0.0076 + 0.01997 + 0.055 + . . . (36)

The best estimate is formally given by the sum of the first
ten terms

mfix,best
1 = 0.132795 ± 0.000014, (37)

according to the formal prescription for the evaluation of
precision. The exact result mf

1 = 0.130954, however, does
not fall into the tiny interval given by the error bars in
(37). Therefore, the formal criterion of the accuracy is vio-
lated in this case: the discrepancy mfix,best

1 −mf
1 = 0.00184

is not controlled by the smallest term of the asymptotic ex-
pansion (36). Still this discrepancy is small and the actual
accuracy for the first moment given by the asymptotic ex-
pansion (36) is 1.3%. This suffices for practical purposes.
One can easily see the difference between these two observ-
ables which reflects the different numerical magnitudes of
the infrared contributions. Note also that the numerical
magnitude of the smallest term of the expansion (36) is
very sensitive to the value of the third coefficient of the ef-
fective β function. For the decay rate we find rf

τ = 0.1946
and rf

τ (1) = 0.1527 to be compared with (22, (23 and (24),
and (25) and (26).

From (34) one sees that an infrared fixed point exists
also in fourth order of the effective β function for any
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k3 < 95.9. For these numerical values the effect of k3 on
the exact moments within the model is rather weak. The
pattern of “convergence” for the decay rate is mainly de-
termined by the contribution of the zeroth order moment
(or even by the mixed m̃20 moment) and is very close to
the expressions in (13)–(35).

In this model there are ways of accelerating the con-
vergence with nice results but they definitely cannot be
justified for use in the general case. Still our conclusion
about the achievable precision within finite order pertur-
bation theory in fifth order remains valid.

5 Conclusions

Using the standard estimate of the accuracy of an asymp-
totic series we have found that the theoretical precision
in the perturbative description of τ decay is already lim-
ited by the asymptotic growth of the coefficients in fifth
order of perturbation theory. This is a scheme-invariant
statement. The accuracy of perturbative expansions for
a reasonably general set of observables cannot be better
than 5–10%. Taking a stricter attitude we claim that the
zeroth order moment is not computable within perturba-
tion theory. Any consistent description of τ decay data at
fifth order of perturbation theory requires the exclusion
of the zeroth order moment from the list of observables
(or it should not constitute a dominant contribution). At
fifth order of perturbation theory and with the present
numerical value of the coupling, the first two moments
of the spectral density are too different to be simultane-
ously treated by perturbation theory with an accuracy
better than 5–10%. Therefore, one has to go beyond finite
order perturbation theory to compare these two observ-
ables if one requires a theoretical accuracy that exceeds
the present experimental accuracy. This implies the use of
some procedure of resummation. The resummation pro-
cedure is not defined uniquely and the result depends on
the prescription chosen [16,24,27]. Moreover, if one resums
the infinite number of perturbation theory terms the con-
densates have no invariant meaning anymore, and their
numerical values may change [24]. Therefore, improving
the theoretical accuracy for this system seems to require
the creation of a new paradigm.

The extraction of αs from the τ decay rate and its com-
parison with the αs values determined from other experi-
ments does not appear to be the best test of perturbation
theory for the τ system. The crucial test of the applicabil-
ity of perturbation theory for the τ system would be the si-
multaneous calculation of two observables (moments) with
an appropriate accuracy. If the set of moments includes the
zeroth moment then the ultimate accuracy of finite order
perturbative expansions has already been reached.
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